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ABSTRACT

A theory is presented for the rate of thermal relaxation of a

two dimensional plasma in a strong uniform dc magnetic field. The

Vahala - Montgomery kinetic description is completed by providing a

cut off time for the time of interaction of two particles which con-

tribute to the collision term. The kinetic equation predicts that

thermal relaxation occurs as a function of the dimensionless time

(wt) (gw/ ) (no~ -1/2, where w is the plasma frequency, f is the

2
gyrofrequency, and no XD is the number of particles per Debye square.

By contrast, in the absence of an external magnetic field, a two

dimensional plasma relaxes as a function of (w t) (n 0 )-l.
p o"D



I. Introduction

Two dimensional electrostatic models of a plasma in a strong

magnetic field have received considerable attention over the last

three years (see, e.g., Taylor and McNamara 1971; Vahala and

Montgomery 1971; Vahala 1972; Montgomery and Tappert 1972;

Montgomery 1972 a,b; Joyce and Montgomery 1972; Taylor 1972; Joyce

and Montgomery 1973). Much of the interest has revolved around the

guiding centre model, in which particle positions are advanced by

their self-consistent electrostatic E X B drifts. The present article,

however, deals with the finite gyroradius case, in which the guiding

centre approximation is not made.

Of primary concern is the rate of thermal relaxation of the

model, a phenomenon which does not occur at all in the guiding centre

limit (Vahala and Montgomery, 1971). In particular, we are interested

in the dependence of the relaxation rate on the various dimensionless

parameters of the problem such as the number of particles per Debye

square and the ratio of gyrofrequency to plasma frequency. In this

paper (Part I) various theoretical considerations relevant to the

thermal relaxation process are developed. In the companion paper

(Part II), these predictions are tested by numerical simulation.

2. The Basic Model

As usual, the particles are taken to be very long rods of

length A, charge -e, mass m, which remain aligned paralled to a

uniform dc magnetic field B = Bb that points in the z-direction.



The position xi(t) of the ith rod is a two-component vector in the

xy plane. The potential energy of interaction of two rods is taken

to be - (2e 2 /1) em xI(t) - x.(t) at time t. A uniform immobile

positive background charge provides overall charge neutrality. The

equations of motion of the ith charge are dxi(t)/dt = i(t),

dv. (t)/dt = (- e/m)(E + v. X Bpc). E = - O/ax is the electric

field and is determined through Poisson's equation and whatever

boundary conditions may obtain.

Equivalently, the dynamics may be specified by the

Klimontovich equation (see e.g., Dupree 1965, 1964; Montgomery,

1971):

+ 8 e +- x B) - f Df=- 0 (1)t x m ~ c av Dt

where the exact distribution f is

1 n a(x - x.(t))8(v - V.(t)) (2)

i

the solution of

2 iren- E = 4 1 fd o (3)
ax



Even though the distribution function f has been introduced, there is

as yet nothing of statistical mechanics in the formulation.

5. Statistical Formulation

Statistical mechanics may be introduced by considering the

initial values of the x., v. (x.(O) x., v.(O) v. , say) to be
~1 ~ 1 o 1 ~lo

statistically distributed in their phase spaces according to some

probability distribution law. (For equilibrium situations, this

will be the canonical ensemble of Gibbs, but otherwise it will not

be.) We indicate expectation values or ensemble averages by a

bracket ( ), and write f = (f) + 8f, E = (E) + 6E. For spatially

uniform ensembles, we will have (E = O and 8(f)/ax = 0.

For spatially uniform and gyrotropic (f)'s, v B * b(f)/a~

0, and ensemble averaging Eq. (1) will give

=e . <Ef) , (4)6t m v

where

2n e x-x'
E - dx'dv' f(x', v', t) , (5)

A If_,i 2  '

and the point x = x' is to be omitted from the integral in Eq. (5).
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It is clear that what is required for the evaluation of the

right hand side of Eq. (4) is

(ff') (f(x, I, t)r(x', v', t))

= ((x - x.(t))8(v - v.(t))6(x'- x.(t))6(v'- v.(t)))
i,j
ifj

(6)

Eqs. (1) through (6) are exact, and it is well known that

approximations and hypotheses must be made before Eq. (4) will lead

to a significant or tractable kinetic description. By this we mean

that the right hand side of Eq. (4) is expressed as a functional of

(f) alone for which we may prove conservation laws, an H-theorem,

and so forth. The program through which these hypotheses and ap-

proximations are developed is too lengthy to expose here, and

reference may be made to textbooks for the relevant background

(e.g., Montgomery 1967, 1971). All the approximations and assump-

tions we shall make are standard except one, and this one will be

given special attention when it occurs in Section 4.

We shall be interested in the Fokker-Planck limit, or the

limit in which the potential energy of interaction between two

typical particles is taken to be much less than the average kinetic

energy per particle, e. This is, in effect, a perturbation expansion

in the dimensionless ratio e 2/e. It is justified by the smallness
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of (no 2) -l (Montgomery, 1972 b). The fact that the right hand side

of Eq. (4) is of second order in this parameter implies that the

evolution of (f) is very slow compared to the explicit time develop-

ment of (ff'). Following what is essentially the Bogolyubov recipe

(Bogolyubov 1946; Dupree 1961; Montgomery 1971), the asymptotic

t -4 form of (Ef) may be taken while holding (f) fixed. The weak

coupling expansion implies that we insert the unperturbed (i.e., non-

interacting) orbits into Eq. (1) and iterate, to find successive ap-

proximations to f. The Fokker-Planck equation results if we stop

the iteration at the stage where the right hand side of Eq. (4) first

fails to vanish. Ensemble averages ( ) are carried out by ignoring

initial correlations:

(A) I =lo lo (f(vio )  A . (7)

Here, A stands for any phase function (including ff' or fE), V = L2

is the configuration-space volume, and the product U runs over all
i

the charges. Higher order corrections to (ff') or (f) are computed

in the same way, with corrections to f and E being calculated before

the averages ( ) are performed.
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4. The Kinetic Equation

The unperturbed orbits x (t), v. (t) are

x. (t) = x. + v. sin Ot
~1 ~lo lo 0

cos t - 1-b X v.

v. (t) = v.io cos Ot + b Xio sin Ot , (8)

where 2 leBo/mcl. Use of Eq. (8) and Eq. (7) in Eqs. (6) and (4)

leads, after some lengthy algebra, to the following kinetic equation

for <f) (Vahala and Montgomery 1971; Vahala 1972):

at

-L- ff) v> (9)

where the dyadic Q is given by

4 A
4,nne (v - v') x b (v - v') x b

S= - T 2 2 2 (10)m v - vl 2
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Eq. (9) has been written in standard Balescu-Lenard form.

The time To is a cut off which has remained up to this point an

undetermined, troublesome constant. (An H-theorem and conservation

laws follow from Eq. (9) no matter what T is, but relaxation times

scale directly as T -1. ) T has the physical significance of being
o o

the interaction time of two particles along their unperturbed

trajectories. Because of the absence, in two dimensions, of motion

parallel to the magnetic field, the unperturbed motions are strictly

periodic and T is infinite. Until now, a wholly satisfactory

argument for assigning T a finite value has been lacking (Vahala and
o

Montgomery 1971; Montgomery 1972 b). We are now able to determine

T.

Detailed inspection of the multiple integrals which contribute

to Q reveals that for T large, the only regions of phase space
kO

which lead to contributions to Q are those which correspond to over-

lapping gyroradii. It is only because we have used a perturbation

scheme based upon pairwise interactions that overlapping gyroradii

continue to overlap for all time. For the true orbits, gyrocenters

will slowly diffuse apart due to long wavelength electric field

fluctuations of the Taylor-McNamara (1971) type. The effect of these

can be introduced in a non-rigorous (but to us wholly convincing) way

by determining To to be that time required to diffuse two gyrocenters

a thermal gyroradius apart:
a thermal gyroradius apart:
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2
D e (11)T.M. m eB (ii)

0

where DTM. is the Taylor-McNamara diffusion coefficient for one

species:

SM. e J1(L/2n\D) (12)

2= Le/4nnoe is the square of the Debye length, and e is the mean

kinetic energy per particle. Eqs. (11) and (12) remove the ambigu-

ities that existed in Eq. (9), for now

To nD / (Q [(L/2nkD) ) (15)

Except for a weak (logarithmic) dependence on the plasma volume, the

thermal relaxation is predicted to occur as a function of the dimen-

sionless time

where p - 4n oe2/ mn defines the plasma frequency. It is well known
0



and has been demonstrated numerically (Montgomery and Nielson, 1970)

that the thermal relaxation of a two dimensional unmagnetized plasma

occurs as a function of the dimensionless time

(m t)/no 2.

(A theoretical discussion is due to Yoo and Abraham-Shrauner 1975.)

There are thus two clear-cut predictions for the rate at which

thermal relaxation occurs for a strongly-magnetized plasma which

differ from anything suggested previously: (1) the relaxation time

is proportional to the magnetic field strength; and (2) the relaxa-

tion time is proportional to nXno, the reciprocal of the square

root of the plasma parameter. Both these predictions are tested

numerically in Part II.

A condition for the validity of the use of the cut off (15)

in Eqs. (9) and (10) is that two thermal particles shall separate in

a time To which is short compared to a relaxation time for (f). It

has been seen in the last paragraph that the latter time is of the

order of ul( 0/. ) noX. The relevant inequality is therefore

which is (14)

which is satisfied for strong enough .
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5. Definition of Relaxation Times

Eqs. (9) and (13) imply a monotonic decrease of Boltzmann's

H(t) = j dv(f)(f) to a minimum value consistent with conservation of

the initial values of f dv(f), Y dv v(f), and S dv v2 (f). For an

initial value of (f), H(co) is uniquely determined and a relaxation

time can be defined as the time required for H(t) to reach some

value between H(o) and H(co). It is by numerically simulating the

particle dynamics and periodically computing H that relaxation times

are measured in Part II and compared with these predictions. The

B = 0 results were reported some time ago by Montgomery and Nielson

(1970).

It will be seen in Part II that the predictions that the

relaxation times scale as Q/ and (no )l/2 are quite well fulfilled

above certain values of 9/o..
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